Cryptanalysis of PRESENT-like ciphers with secret S-boxes

Julia Borghoff Lars Knudsen Gregor Leander Søren S. Thomsen

DTU, Denmark

FSE 2011

=

프 🕨 🗉 프

Cryptanalysis of Maya

Julia Borghoff Lars Knudsen Gregor Leander Søren S. Thomsen

DTU, Denmark

FSE 2011

G. Leander PRESENT with secret S-boxes

æ

æ

프 🖌 🛪 프 🕨

2 The Attack

DTU

æ

- < 프 > < 프 >

Maya

A more efficient variant of PRESENT.

- 64 bit block size
- key-dependent
 4-bit Sbox
- fixed bit permutation
- round keys
- 16 rounds

≘

э

G. Leander

Outline

Our Contribution

Main Result

In this talk we explain how to break Maya with a complexity of $\approx 2^{37}.$

Technique: Differential attack with a twist.

Idea

Use good differentials without knowing them.

э

-∢ ≣ →

Differential Attack on Maya

- We cannot specify characteristics
- Thus: no characteristic to be followed

$$(x||r) \xrightarrow{(y||r)} E_{K_1} \xrightarrow{\Delta?} E_{K_2} \xrightarrow{\Delta?} E_{K_3} \cdots \xrightarrow{(z_{K_r})} \Delta\gamma$$

=

프 🕨 🗆 프

Differential Attack on Maya

- We cannot specify characteristics
- Thus: no characteristic to be followed

$$(x||r) \xrightarrow{(x||r)} E_{K_1} \xrightarrow{\Delta?} E_{K_2} \xrightarrow{\Delta?} E_{K_3} \cdots \xrightarrow{(K_r)} E_{K_r} \xrightarrow{(X)} \Delta\gamma$$

Use relative information:

Informally: Compare distribution of $\Delta \gamma$ and $\Delta \gamma'$: Learn something about $\Delta \alpha$ and/or $\Delta \alpha'$.

Left Most Sbox

Remark

We focus on the leftmost Sbox in the first round. Other Sboxes similar.

- try to recover the white Sbox
- using differentials

프 🕨 🗆 프

with a twist

The basic idea to recover the Sboxes

- Fix two inputs $x \neq y \in \mathbb{F}_2^4$ to the leftmost Sbox *S*.
- Estimate the probability of

 $(x\oplus y)||0^{60}
ightarrow ?||0^{60}$

using counters for each pair (x, y).

э

프 🖌 🛪 프 🛌

The basic idea in a picture

- Fix *x*, *y*
- Encrypt pair $(x|r_i, y|r_i), 0 \le i < N.$
- Count how often only first Sbox active in the output

⊟

First Assumption

Assumption

The smaller the hamming weight of $S(x) \oplus S(y)$ is, the higher the counter.

The highest counters correspond to one bit differences $S(x) \oplus S(y)$. This will tell us something about the Sbox.

G. Leander

First Assumption in a Picture

- *x*, *y* with one bit output difference
 - wt(S(x)+S(y)) = 1
- One active Sboxes in the second round

⊟

э

First Assumption in a Picture

- *x*, *y* with two bit output difference
 - wt(S(x)+S(y)) = 2

⊟

э

 Two active Sboxes in the second round

A bit more precise

- Encrypt structures $\star || r_i$, \star runs through all 4 bit values and $r_i \in \mathbb{F}_2^{60}$ is random and fixed. $0 \le i < Ns$.
- For each pair $\{x, y\}$ with $x \neq y \in \mathbb{F}_2^4$ we have a counter

$$C(\{x, y\}) = \sharp\{r_i | Enc(x||r_i) \oplus Enc(y||r_i) = ?||0^{64}\}$$

Assumption

The highest counters $C(\{x, y\})$ correspond to x, y such that wt($S(x) \oplus S(y)$) = 1.

For the rest: Examples only!

Example

$C(\{x, y\}) = \sharp\{r_i | Enc(x||r_i) \oplus Enc(y||r_i) = ?||0^{64}\}$

(sorted and only the 24 highest values out of 120)

C(x,y)	273	265	264	263	261	261	253	243
$\{x, y\}$	(b,9)	(7,2)	(d,a)	(6,5)	(3,1)	(f,8)	(e,4)	(c,0)
C(x,y)	163	157	139	136	119	114	102	95
$\{x, y\}$	(a,6)	(8,4)	(2,0)	(9,1)	(f,e)	(d,5)	(c,7)	(b,3)
C(x,y)	11	8	8	7	6	6	5	5
$\{\boldsymbol{x}, \boldsymbol{y}\}$	(8,0)	(8,3)	(f,4)	(e,7)	(4,2)	(5,2)	(6,1)	(a,9)

Do the highest counters $C(\{x, y\})$ correspond to x, y such that wt($S(x) \oplus S(y)$) = 1?

=

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example for the counters

C(x,y)	273	265	264	263	261	261	253	243
$\{x, y\}$	(b,9)	(7,2)	(d,a)	(6,5)	(3,1)	(f,8)	(e,4)	(c,0)
$wt(S(x) \oplus S(y))$	1	1	1	1	1	1	1	1
C(x,y)	163	157	139	136	119	114	102	95
$\{x, y\}$	(a,6)	(8,4)	(2,0)	(9,1)	(f,e)	(d,5)	(c,7)	(b,3)
$wt(S(x) \oplus S(y))$	1	1	1	1	1	1	1	1
C(x,y)	11	8	8	7	6	6	5	5
$\{x, y\}$	(8,0)	(8,3)	(f,4)	(e,7)	(4,2)	(5,2)	(6,1)	(a,9)
$wt(S(x) \oplus S(y))$	2	2	1	3	2	1	2	2

The assumption is fulfilled! But there is more...

э

→ < Ξ →</p>

Probabilities of Differentials

Assumption

The probability of a (truncated) differential depends on the (second round) input difference.

Implication for the counters $C(\{x, y\})$: High counters should correspond to the same output difference.

Example for the counters

C(x,y)	273	265	264	263	261	261	253	243
$\{x, y\}$	(b,9)	(7,2)	(d,a)	(6,5)	(3,1)	(f,8)	(e,4)	(c,0)
$wt(S(x) \oplus S(y))$	1	1	1	1	1	1	1	1
$S(x) \oplus S(y)$	4	4	4	4	4	4	4	4
C(x,y)	163	157	139	136	119	114	102	95
$\{x, y\}$	(a,6)	(8,4)	(2,0)	(9,1)	(f,e)	(d,5)	(c,7)	(b,3)
$wt(S(x) \oplus S(y))$	1	1	1	1	1	1	1	1
$S(x) \oplus S(y)$	2	2	2	2	2	2	2	2
C(x,y)	11	8	8	7	6	6	5	5
$\{x, y\}$	(8,0)	(8,3)	(f,4)	(e,7)	(4,2)	(5,2)	(6,1)	(a,9)
$wt(S(x) \oplus S(y))$	2	2	1	3	2	1	2	2
$S(x) \oplus S(y)$	5	6	8	7	5	8	5	5

æ

・ロト ・回ト ・ヨト ・ヨト

Example for the counters

C(x,y)	273	265	264	263	261	261	253	243
$\{x, y\}$	(b,9)	(7,2)	(d,a)	(6,5)	(3,1)	(f,8)	(e,4)	(c,0)
$wt(S(x) \oplus S(y))$	1	1	1	1	1	1	1	1
$S(x)\oplus S(y)$	4	4	4	4	4	4	4	4

- The highest 8 counters correspond to 8 pairs with the same output difference.
- There are exactly 8 such pairs, so we learn them all.
- We do not know the exact difference.
- But we assume it is of hamming weight one.

Recovering the Sbox

Remark

That is a lot(?) of information about the Sbox!

We learn up to 4 sets

$$D_e = \{\{x, y\} \mid S(x) \oplus S(y) = e\}$$

- Still too many possibilities!
- Learning all 4 sets is difficult.

프 🕨 🗉 프

Attack the Inverse

We learn up to 4 sets

$$D_e = \{\{x, y\} \mid S(x) \oplus S(y) = e\}$$

Even better

We can do the attack upside down!

We learn up to 4 sets

$$E_f = \{\{x, y\} \mid S^{-1}(x) \oplus S^{-1}(y) = f\}$$

Experimental Fact

Given two sets D_e and one set E_f : Often only one possible Sbox.

Ξ

Some Improvements

Improvements over the basic idea:

- Relaxed truncated differentials
- Detect errors, i.e. discard wrong sets

Details in the paper

Crucial

Those make the difference between a practical and a theoretical attack.

Outline

Experimental Complexity of the Attack

Conclusions

- Practical attack on Maya
- Applies to a broader class
- Up to 28 rounds: not secure
- Technique: Twist on truncated differentials
- Mathematical model of the complexity in the paper

Thanks a lot!

G. Leander PRESENT with secret S-boxes

æ

(문)(문)